Preparation, characterization and stability of Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic with NASICON-type structure

نویسندگان

چکیده مقاله:

A conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using differential scanning calorimetry (DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and AC impedance techniques. The XRD patterns exhibited the existence of LiGe2(PO4)3 as the dominant phase with a little impurity phase of GeO2. SEM images revealed the presence of large LAGP crystals. A high conductivity of 5.36×10-3 S/cm at 25 °C was obtained for the pristine LAGP. Furthermore, the stability of the LAGP was examined in 1 M LiNO3 aqueous solution by XRD and conductivity measurements. XRD pattern and ionic conductivities of the immersed LAGP showed no change as compared with the pristine LAGP, showing the good stability in aqueous electrolyte and great potential for aqueous lithium-air battery application.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

High Lithium-Ion-Conducting NASICON-Type Li1+xAlxGeyTi2−x−y(PO4)3 Solid Electrolyte

A water-stable solid electrolyte is a key material without which aqueous lithium–air batteries could not be operated. In this study, we have examined the electrical conductivity and mechanical properties of a water-stable lithium-ion-conducting solid electrolyte, Li1+xAlxGeyTi2−x−y(PO4)3 with the NASICON-type structure, as a function of the Al and Ge content. Li1+xAlxGeyTi2−x−y(PO4)3 was synthe...

متن کامل

ساخت شیشه- سرامیک هادی یون لیتیوم با هدایت یونی بالا برای ساخت باتری‌های لیتیوم- اکسیژن و یون- لیتیوم تمام جامد

In this research, new lithium ion conductor glass-ceramics with NASICON-type structure (Li1+x+yAlxCryGe2-x-y (PO4)3, x+y=0.5) were synthesized using melt-quenching method and converted to glass-ceramics through heat treatment. Influence of addition of different concentrations of aluminum and chromium in LiGe2(PO4)3 glass-ceramic was investigated for ionic conduction improvement. Substitution of...

متن کامل

Preparation and characterization of fluorapatite-bioactive glass S53P4 nanocomposite

This research has been done to study characteristic and biocompatible evaluation of a nano-biocompositeceramic with the bioglass (BG) as a first phase. In this regard, synthesis of S53P4 (53% SiO2, 4% P2O5,23% Na2O and 20% CaO) bioglass has been considered as the first phase and flourapatite (FA) consideredas the second phase. Afterwards, nanocomposite with the base of S53P4 b...

متن کامل

Fast Li-Ion-Conducting Garnet-Related Li7–3xFexLa3Zr2O12 with Uncommon I4̅3d Structure

Fast Li-ion-conducting Li oxide garnets receive a great deal of attention as they are suitable candidates for solid-state Li electrolytes. It was recently shown that Ga-stabilized Li7La3Zr2O12 crystallizes in the acentric cubic space group I4̅3d. This structure can be derived by a symmetry reduction of the garnet-type Ia3̅d structure, which is the most commonly found space group of Li oxide garne...

متن کامل

Preparation and in vitro characterization of novel bioactive glass ceramic nanoparticles.

SiO(2)-CaO-P(2)O(5) ternary bioactive glass ceramic (BGC) nanoparticles with different compositions were prepared via a three-step sol-gel method. Polyethylene glycol was selected to be used as the surfactant to improve the dispersion of the nanoparticles. The morphology and composition of these BGC nanoparticles were observed by ESEM and EDX. All the BGC particles obtained in this method were ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 1

صفحات  38- 43

تاریخ انتشار 2016-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023